Regulation of B family DNA polymerase fidelity by a conserved active site residue: characterization of M644W, M644L and M644F mutants of yeast DNA polymerase ε

نویسندگان

  • Zachary F. Pursell
  • Isabelle Isoz
  • Else-Britt Lundström
  • Erik Johansson
  • Thomas A. Kunkel
چکیده

To better understand the functions and fidelity of DNA polymerase epsilon (Pol epsilon), we report here on the fidelity of yeast Pol epsilon mutants with leucine, tryptophan or phenylalanine replacing Met644. The Met644 side chain interacts with an invariant tyrosine that contacts the sugar of the incoming dNTP. M644W and M644L Pol epsilon synthesize DNA with high fidelity, but M644F Pol epsilon has reduced fidelity resulting from strongly increased misinsertion rates. When Msh6-dependent repair of replication errors is defective, the mutation rate of a pol2-M644F strain is 16-fold higher than that of a strain with wild-type Pol epsilon. In conjunction with earlier studies of low-fidelity mutants with replacements for the homologous amino acid in yeast Pol alpha (L868M/F) and Pol delta (L612M), these data indicate that the active site location occupied by Met644 in Pol epsilon is a key determinant of replication fidelity by all three B family replicative polymerases. Interestingly, error specificity of M644F Pol epsilon is distinct from that of L868M/F Pol alpha or L612M Pol delta, implying that each polymerase has different active site geometry, and suggesting that these polymerase alleles may generate distinctive mutational signatures for probing functions in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of a replicative DNA polymerase mutant with reduced fidelity and increased translesion synthesis capacity

Changing a highly conserved amino acid in motif A of any of the four yeast family B DNA polymerases, DNA polymerase alpha, delta, epsilon or zeta, results in yeast strains with elevated mutation rates. In order to better understand this phenotype, we have performed structure-function studies of homologous mutants of RB69 DNA polymerase (RB69 pol), a structural model for family B members. When L...

متن کامل

Isolation and molecular characterization of the RecQsim gene in Arabidopsis, rice (Oryza sativa) and rape (Brassica napus)

In any organism that reproduces sexually, DNA Recombination plays vital roles in the generation of allelic diversity as well as in preservation of genome fidelity. Genome fidelity is particularly important in plants because mutations occurring during the development of flowering plants are heritable and can be passed onto the next generation. One of the gene families that play crucial roles in ...

متن کامل

Switching between polymerase and exonuclease sites in DNA polymerase ε

The balance between exonuclease and polymerase activities promotes DNA synthesis over degradation when nucleotides are correctly added to the new strand by replicative B-family polymerases. Misincorporations shift the balance toward the exonuclease site, and the balance tips back in favor of DNA synthesis when the incorrect nucleotides have been removed. Most B-family DNA polymerases have an ex...

متن کامل

Crystal Structure of Yeast DNA Polymerase ε Catalytic Domain

DNA polymerase ε (Polε) is a multi-subunit polymerase that contributes to genomic stability via its roles in leading strand replication and the repair of damaged DNA. Here we report the ternary structure of the Polε catalytic subunit (Pol2) bound to a nascent G:C base pair (Pol2G:C). Pol2G:C has a typical B-family polymerase fold and embraces the template-primer duplex with the palm, fingers, t...

متن کامل

Side chains that influence fidelity at the polymerase active site of Escherichia coli DNA polymerase I (Klenow fragment).

To investigate the interactions that determine DNA polymerase accuracy, we have measured the fidelity of 26 mutants with amino acid substitutions in the polymerase domain of a 3'-5'-exonuclease-deficient Klenow fragment. Most of these mutant polymerases synthesized DNA with an apparent fidelity similar to that of the wild-type control, suggesting that fidelity at the polymerase active site depe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2007